

Econ Technologies Co., Ltd.

Technical Specifications AVANT Shock Analyzer

AVANT series Shock Analyzer is a powerful and tailored instrument for shock events transient capture and analysis. AVANT can meet rigorous criterions in measuring and it is suitable for shock, drop and other kind of impact events.

Based on USB2.0 connectivity, AVANT is available for two different models: MI-51 and MI-52. MI-52 is used for common application with 2 acquisition channels and MI-51 is used for high level shock events measuring and analysis.

Provides four analysis modules based on different test standards: Shock Measuring and Analysis, SRS, Pulse Analysis and Damage Boundary test.

Features

- ♦ Compatible with ISO, MIL-STD-810 and User defined
- ♦ Sampling rate up to 1MHz
- ♦ Acceleration range up to 100,000gn
- ♦ Shock Response Spectrum (SRS) Analysis
- ♦ Tolerance Analysis and Pass/Fail Judge
- ♦ Multiple Impact Events Recording and Playback
- ♦ Auto Generation of Test Report
- ♦ USB2.0 Connectivity, Plug and Play

Model and Specifications

Model	MI-5202 (value)	MI-5204/MI-5208 (value)	MI-5104/MI-5108 (premier)
Specifications			
Input channel	1~2 analog voltage inputs with 1~2 charge inputs(built-in charge amplifiers: 1mV/pC and 0.1mV/pC)	1~4 anal	og voltage inputs
Voltage range		-10Vpeak~+10 Vpeak	
Coupling mode	AC, DC, IEPE(built-in IEPE sensor power for each channel) (can be enhanced for compatibility with TEDS transducer)	AC, DC, IEPE(built-in IEPE sensor power for each channel)	AC, DC, IEPE(built-in IEPE sensor power for each channel)(can be enhanced for compatibility with TEDS transducer)
ADC Resolution	24-	24-bit	
Sampling frequency	Max 192kHz		Max 1MHz
Pulse duration	Min 0.5msec M		Min 0.1msec
Acceleration range		Max 100,000gn	
Dynamic range	>120	>120dB >80dB	
THD	<-95	<-95dB	
Signal-to-noise	>95dB >70dB		>70dB
Frequency accuracy		0.01%	
External Trigger		Enable	
CE compliance		Yes	
Physical			
Dimension (mm)		335x255x63.5	
Weight (kg)		2.8	
Electrical			
Power Supply	,	AC 88~264V	
Power		40W	
Connectivity	USB2.0		
Operating System		Microsoft Windows XP/ Windows 7	
Environmental		445 440 °E / 40 1 - 50	°0
Iemperature		14 to 113 F /-10 to 50	
Humidity		20% to 90% RH non-condens	Ing(40 ℃)

Technical Specifications AVANT Shock Analyzer

Measurement Application Main Applications

- ≻ Shock Data Capture
- ⊳ **SRS** Analysis
- ≻ **Pulse Analysis**
- \triangleright
- Damage Boundary

General Options

- ≻ **Playback Analysis**
- \triangleright Instrument Calibration
- \triangleright Automatic Word or PDF Report Generation
- Data and File Management ⊳
- > Cursor Indicator
- MATLAB Interface

Shock Measuring and Analysis

You can capture the shock pulses easily and simultaneously when shock or impact event happens. And besides time domain analysis, you can use shock response spectrum (SRS) to estimate the potential damage due to peak values on different natural frequencies in shock. ISO, MIL-STD-810 and user-defined criterions of tolerance are available.

Shock Measuring and Analysis takes ideal time waveform as standard such as ideal half-sine pulse, ideal sawtooth pulse and ideal trapezoidal pulse; it is used for shock equipment that can generate ideal pulse and requires the pulse measured from UUT on the table of shock equipment to be in the tolerance band of the ideal pulse according to the test standard.

Detailed specifications are given below.

Other Analysis

SRS analysis, SR demo, rotation shock analysis, force & distortion analysis

Test Types

Based on classical shock; contains shock test and Impact test

Transient Capture

Sampling frequency	Up to 192kHz(MI-52)
	Up to 1MHz(MI-51)
Acceleration range	Up to 100,000gn
Pulse duration	0.5 to 100ms(MI-52)
	0.1 to 100ms(MI-51)
Sampling time	1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000,
	2000, 4000, 7000, 10000, 13000, 16000,
	20000ms(MI-52)
	0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200,
	500, 1,000, 2000, 4000, 7000, 10000, 13000,
	16000, 20000ms(MI-51)
Direction	positive, reverse

Ideal waveform

Waveform Half-sine, trapezoid, terminal peak sawtooth Standard ISO, IEC, ISTA, MIL-STD, User defined Tolerance According to each standard Auto-match the acquired data matches ideal waveform Comparison compare acquired data with ideal waveform

RRS

SRS type	Primary, Residual, Composite
Resolution	1/1,1/2,1/3,1/6,1/12,1/24 octave analysis
Parameters	Damp coefficients and Q,
	lower/upper/reference frequency
SRS definition	Calculate SRS automatically from
	ideal waveform or set RRS manually,
	and the tolerance can be set
Comparison	compare measured SRS with RRS

Transient Capture and SRS analysis

Enable or disable

Low-pass and high-pass filters Set different filters for each channel

Set cutoff frequency or filter rate

Filtering

Filters Low-pass filters High-pass filters

Triggering

Source

Slopes Level Trigger mode Remove DC Remove noise Input channel (Auto Trigger Every Frame) no trigger(Free Run) Exterior DIO Positive, negative or bi-polar 1 to 99% of ideal waveform Pre-trigger or post-trigger Enable or disable Enable or disable

Measurement Controls Start/stop

Controls Status displays

Data saving

Save modes Save contents Signal file formats Data export Data recording Playback

On-line save and auto save Signals and panes ECON binary/ASCII or UFF binary/ASCII Excel, MATLAB Used for offline analysis Replay shock waves manually

Running time, frames, running status

Test Report Content

Report template

Customized, contains parameters, panes etc. Customized

Technical Specifications AVANT Shock Analyzer

SRS

You can capture the shock pulses easily and simultaneously when shock or impact event happens. And besides time domain analysis, you can use shock response spectrum (SRS) to estimate the potential damage due to peak values on different natural frequencies in shock.

SRS takes reference SRS as the standard; it is used for shock equipment that can generate pulse according to the reference SRS and requires the SRS measured from UUT on the table of shock equipment to be in the tolerance band of the reference SRS. Detailed specifications are given below.

Other Analysis

SR demo, rotation shock analysis, force & distortion analysis

SRS Profile

SRS type	Composite SRS
Resolution	1/1,1/2,1/3,1/6,1/12,1/24 octave analysis
Parameters	Damp coefficients and Q,
	lower/upper frequency
Profile definition	setup frequency, amplitude,
	lower/upper tolerance of breakpoints with
	unlimited in the profile table
Comparison	compare measured SRS with SRS profile

Transient Capture

Sampling frequency	Up to 192kHz(MI-52)
	Up to 1MHz(MI-51)
Acceleration range	Up to 100,000gn
Sampling time	Customized, limited by SRS profile
Sampling number	Customized
Direction	positive, reverse

Filtering

Filters

Low-pass filters High-pass filters Low-pass and high-pass filters Set different filters for each channel Set cutoff frequency or filter rate Enable or disable

Transient Capture and SRS analysis

Triggering Source

Slopes Level Trigger mode Remove DC Input channel (Auto Trigger Every Frame) no trigger(Free Run) Bi-polar Acceleration level Pre-trigger or post-trigger Enable or disable

Measurement Controls

Controls Status displays Start/stop Running time, frames, running status

Data saving

Save modes Save contents Signal file formats Data export Data recording Playback On-line save and auto save Signals and panes ECON binary/ASCII or UFF binary/ASCII Excel, MATLAB Used for offline analysis Replay shock waves manually

Test Report

Content Report template Customized, contains parameters, panes etc. Customized

Pulse Analysis

You can capture the shock pulses easily and simultaneously when shock or impact event happens. And besides time domain analysis, you can use shock response spectrum (SRS) to estimate the potential damage due to peak values on different natural frequencies in shock.

Pulse Analysis is used for shock equipment that generates non-ideal and stochastic pulse.

Detailed specifications are given below.

Other Analysis

SRS analysis, SR demo, rotation shock analysis, force & distortion analysis

Transient Capture

Up to 192kHz(MI-52)
Up to 1MHz(MI-51)
Up to 100,000gn
Customized, limited by frequency range of
SRS analysis
Customized
positive, reverse

SRS Analysis

SRS type Resolution Parameters Composite SRS 1/1,1/2,1/3,1/6,1/12,1/24 octave analysis Damp coefficients and Q, lower/upper/reference frequency

Filtering Filters

Low-pass filters High-pass filters Low-pass and high-pass filters Set different filters for each channel Set cutoff frequency or filter rate Enable or disable

Transient Capture and SRS analysis

Triggering Source

Slopes Level Trigger mode Remove DC Input channel (Auto Trigger Every Frame) no trigger(Free Run) Bi-polar Acceleration level Pre-trigger or post-trigger Enable or disable

Measurement Controls Controls Start/stop

Controls Status displays

Data saving

Save modes Save contents Signal file formats Data export Data recording Playback On-line save and auto save Signals and panes ECON binary/ASCII or UFF binary/ASCII Excel, MATLAB Used for offline analysis Replay shock waves manually

Running time, frames, running status

Test Report

Content Report template Customized, contains parameters, panes etc. Customized

Damage Boundary

Damage Boundary refers to ASTM D3332-99 standard and programs test steps of Critical Velocity Change shock test and Critical Acceleration shock test to determine the damage boundary of the products. Damage Boundary test cover determination of the shock fragility of the products. This fragility information may be used in designing shipping containers for transporting the products. It may also be used to improve product ruggedness. Detailed specifications are given below.

Other Analysis

SRS analysis, SR demo, rotation shock analysis, force & distortion analysis

Transient Capture

Sampling frequency	Up to 192kHz(MI-52)
	Up to 1MHz(MI-51)
Acceleration range	Up to 100,000gn
Sampling time	auto-match with test pulse of Critical Velocity
	Change shock test and Critical Acceleration shock test
Triggering	

Triggering

Input channel (Auto Trigger Every Frame)
no trigger(Free Run)
Bi-polar
1 to 99% of test pulse of Critical Velocity
Change shock test and Critical Acceleration
shock test
Pre-trigger or post-trigger
Enable or disable

SRS Analysis

SRS typePrimary, Residual, CompositeResolution1/1,1/2,1/3,1/6,1/12,1/24 octave analysisParametersDamp coefficients

Damage Boundary

Test management New, Reset, Update Damage Boundary Adjustable after the test ends

Critical Velocity Change

Test pulse	Half-sine, trapezoid, sawtooth etc.
Pulse width	Set accord with ASTM D3332-99 standard
Test program	Setup the test starting and increment of
	Critical Velocity Change shock test
Vc calculation	Setup the ratio of last shock

Damage Boundary

Critical Acceleration

ernited / teeerierdire	<u></u>
Test pulse	Half-sine, trapezoid, sawtooth etc.
Pulse width	Set accord with ASTM D3332-99 standard
Test program	Setup the test starting and increment of
	Critical Acceleration shock test
Ac calculation	Setup the ratio of last shock
<u>Filtering</u>	
Filters	Low-pass and high-pass filters
	Set different filters for each channel
Low-pass filters	Set cutoff frequency or filter rate
High-pass filters	Enable or disable
Measurement Cont	trols
Controls	Start/stop, next shock, damage
Status displays	Running time, frames, running status
Determine	
Data saving	
Save modes	On-line save and auto save
Save contents	Signals and panes
Signal file formats	ECON binary/ASCII or UFF binary/ASCII
Data export	Excel, MATLAB
Test Pepert	
Contont	Customized contains parameters, paper etc.
Depart templets	Customized, contains parameters, panes etc
Report template	Customized

Econ Technologies Co., Ltd.

Building 4, 1418-41 Moganshan Rd. Hangzhou 310015, China Tel: +86-571 88178376 Fax: +86-571 88178385 Website: www.econ-group.com Email: sales@econ-group.com Copyright © 2003~2019 ECON Technologies

All specifications included herein subject to change without notice and shall not form part of any contract.

ECON, AVANT are registered trademarks of Econ Technologies. Microsoft Windows and Windows NT are registered trademarks or trademarks of Microsoft Corporation in United States and/or other countries. MATLAB is the registered trademark of Mathworks. ICP is the registered trademark of PCB Piezotronics, Inc.

Ref: 20190822